Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438136

RESUMO

Leguminous plants provide carbon to symbiotic rhizobia in root nodules to fuel the energy-consuming process of nitrogen fixation. The carbon investment pattern from the acquired sources is crucial for shaping the growth regime of the host plants. The autoregulation of nodulation (AON) signaling pathway tightly regulates the number of nodules that form. AON disruption leads to excessive nodule formation and stunted shoot growth. However, the physiological role of AON in adjusting the carbon investment pattern is unknown. Here, we show that AON plays an important role in sustaining shoot water availability, which is essential for promoting carbon investment in shoot growth in Lotus japonicus. We found that AON-defective mutants exhibit substantial accumulation of non-structural carbohydrates, such as sucrose. Consistent with this metabolic signature, resilience against water-deficit stress was enhanced in the shoots of the AON-defective mutants. Furthermore, the water uptake ability was attenuated in the AON-defective mutants, likely due to the increased ratio of nodulation zone, which is covered with hydrophobic surfaces, on the roots. These results increase our physiological understanding of legume-rhizobia symbiosis by revealing a trade-off between root nodule formation and shoot water availability.

2.
Physiol Plant ; 175(5): e14000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882282

RESUMO

Sink-source imbalance causes accumulation of nonstructural carbohydrates (NSCs) and photosynthetic downregulation. However, despite numerous studies, it remains unclear whether NSC accumulation or N deficiency more directly decreases steady-state maximum photosynthesis and photosynthetic induction, as well as underlying gene expression profiles. We evaluated the relationship between photosynthetic capacity and NSC accumulation induced by cold girdling, sucrose feeding, and low nitrogen treatment in Glycine max and Phaseolus vulgaris. In G. max, changes in transcriptome profiles were further investigated, focusing on the physiological processes of photosynthesis and NSC accumulation. NSC accumulation decreased the maximum photosynthetic capacity and delayed photosynthetic induction in both species. In G. max, such photosynthetic downregulation was explained by coordinated downregulation of photosynthetic genes involved in the Calvin cycle, Rubisco activase, photochemical reactions, and stomatal opening. Furthermore, sink-source imbalance may have triggered a change in the balance of sugar-phosphate translocators in chloroplast membranes, which may have promoted starch accumulation in chloroplasts. Our findings provide an overall picture of photosynthetic downregulation and NSC accumulation in G. max, demonstrating that photosynthetic downregulation is triggered by NSC accumulation and cannot be explained solely by N deficiency.


Assuntos
Folhas de Planta , Transcriptoma , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Carboidratos , Perfilação da Expressão Gênica
3.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980805

RESUMO

The preventive efficacy of MUC1-specific DNA immunization on inflammation-driven colon carcinogenesis in human MUC1 transgenic (MUC1.Tg) mice was investigated. Mice were vaccinated with MUC1 DNA mixed with autologous bone-marrow-derived dendritic cells (BMDCs), and then colonic tumors were induced by azoxymethane (AOM) injection and oral administration of dextran sulfate sodium (DSS). Two types of tumors, squamous metaplasia and tubular adenoma, were observed. Both expressed high levels of MUC1 as indicated by the binding of anti-MUC1 antibodies with different specificities, whereas MUC1 expression was not detected in normal colonic mucosa. When mice were immunized with MUC1 DNA + BMDCs, tumor incidence, tumor number, and tumor size were significantly reduced. In contrast, vaccination with MUC1 DNA alone or BMDCs alone was ineffective in reducing tumor burden. Inflammation caused by DSS was not suppressed by the MUC1 DNA + BMDCs vaccination. Furthermore, MUC1 protein expression levels, as judged by anti-MUC1 antibody binding in tumors grown after vaccination, did not significantly differ from the control. In conclusion, an inflammation-driven carcinogenesis model was established in MUC1.Tg mice, closely resembling human colon carcinogenesis. In this model, vaccination with MUC1 DNA + BMDCs was effective in overriding MUC1 tolerance and reducing the tumor burden by a mechanism not affecting the level of colonic inflammation.

4.
J Plant Res ; 136(2): 201-210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536238

RESUMO

Leaf nitrogen (N) level affects not only photosynthetic CO2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700+) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700+ can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.


Assuntos
Oryza , Oryza/metabolismo , Fotossíntese , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo
5.
Ann Bot ; 130(7): 991-998, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36283030

RESUMO

BACKGROUND AND AIMS: The surface area of mesophyll cells (Smes) and chloroplasts (Sc) facing the intercellular airspace (IAS) are important parameters for estimating photosynthetic activity from leaf anatomy. Although Smes and Sc are estimated based on the shape assumption of mesophyll cells (MCs), it is questionable if the assumption is correct for rice MCs with concave-convex surfaces. Therefore, in this study, we establish a reconstruction method for the 3-D representation of the IAS in rice leaf tissue to calculate the actual Smes and Sc with 3-D images and to determine the correct shape assumption for the estimation of Smes and Sc based on 2-D section images. METHODS: We used serial section light microscopy to reconstruct 3-D representations of the IAS, MCs and chloroplasts in rice leaf tissue. Actual Smes and Sc values obtained from the 3-D representation were compared with those estimated from the 2-D images to find the correct shape-specific assumption (oblate or prolate spheroid) in different orientations (longitudinal and transverse sections) using the same leaf sample. KEY RESULTS: The 3-D representation method revealed that volumes of the IAS and MCs accounted for 30 and 70 % of rice leaf tissue excluding epidermis, respectively, and the volume of chloroplasts accounted for 44 % of MCs. The shape-specific assumption on the sectioning orientation affected the estimation of Smes and Sc using 2-D section images with discrepancies of 10-38 %. CONCLUSIONS: The 3-D representation of rice leaf tissue was successfully reconstructed using serial section light microscopy and suggested that estimation of Smes and Sc of the rice leaf is more accurate using longitudinal sections with MCs assumed as oblate spheroids than using transverse sections with MCs as prolate spheroids.


Assuntos
Oryza , Fosmet , Células do Mesofilo , Folhas de Planta/anatomia & histologia , Cloroplastos , Fotossíntese , Dióxido de Carbono
6.
Ann Bot ; 130(3): 265-283, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35947983

RESUMO

BACKGROUND: Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE: This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS: For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.


Assuntos
Dióxido de Carbono , Fotossíntese , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análise Custo-Benefício , Células do Mesofilo , Filogenia , Folhas de Planta/fisiologia
7.
Biochem Biophys Res Commun ; 621: 39-45, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35810589

RESUMO

Plasma membrane (PM) H+-ATPase contributes to nutrient uptake and stomatal opening by creating proton gradient across the membrane. Previous studies report that a dominant mutation in the OPEN STOMATA2 locus (OST2-2D) constitutively activates Arabidopsis PM H+-ATPase 1 (AHA1), which enlarges proton motive force for root nutrient uptake. However, the stomatal opening is also constitutively enhanced in the ost2-2D, causing drought hypersensitivity. To develop plants with improved nutrient acquisition and normal stomatal movement, we generated grafted plants (scion/rootstock: Col-0 (WT)/ost2-2D), and compared their growth, nutrient element content, and transcriptomes with those of control plants (WT/WT) under nutrient-rich or nutrient-poor conditions. WT/ost2-2D shoots had larger weights, rosette diameter, leaf blade area, and content of C, N, K, Ca, S, P, Mg, Na, Mn, B, Co, and Mo under nutrient-poor conditions compared with WT/WT shoots. The root weights and primary root length were greater in WT/ost2-2D plants than in WT/WT plants under both nutrient conditions. Root expression of the high-affinity nitrate transporter NRT2.1, potassium transporter HAK5, and divalent cation transporter IRT1 was higher in WT/ost2-2D plants than in WT/WT plants under nutrient-poor conditions. These results suggest that root-specific activation of PM H+-ATPase enhances plant growth by increasing root uptake of nutrient elements under nutrient-poor conditions. Our study presents a novel approach to improving nutrient uptake efficiency in crops for low-input sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Nutrientes , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
8.
Immunity ; 55(5): 912-924.e8, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35413245

RESUMO

Lymphocyte activation gene-3 (LAG-3) is a potent inhibitory co-receptor; yet, its functional ligand remains elusive, with distinct potential ligands identified. Here, we investigated the relative contribution of potential ligands, stable peptide-MHC class II complexes (pMHCII) and fibrinogen-like protein 1 (FGL1), to LAG-3 activity in vitro and in vivo. Binding of LAG-3 to stable pMHCII but not to FGL1 induced T cell suppression in vitro. Consistently, LAG-3 mutants lacking FGL1-binding capacity but not those lacking stable pMHCII-binding capacity retained suppressive activity in vitro. Accordingly, targeted disruption of stable pMHCII- but not FGL1-binding capacity of LAG-3 in NOD mice recapitulated diabetes exacerbation by LAG-3 deficiency. Additionally, the loss of stable pMHCII-binding capacity of LAG-3 augmented anti-cancer immunity comparably with LAG-3 deficiency in C57BL/6 mice. These results identify stable pMHCII as a functional ligand of LAG-3 both in autoimmunity and anti-cancer immunity. Thus, stable pMHCII-LAG-3 interaction is a potential therapeutic target in human diseases.


Assuntos
Antígenos CD , Autoimunidade , Antígenos de Histocompatibilidade Classe II , Neoplasias , Linfócitos T , Animais , Antígenos CD/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Neoplasias/imunologia , Peptídeos/metabolismo , Linfócitos T/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
9.
Plants (Basel) ; 11(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270179

RESUMO

Sago palm (Metroxylon sagu Rottb.) grows in well-drained mineral soil and in peatland with high groundwater levels until complete submersion. However, the published information on nutrient uptake and carbohydrate content in sago palms growing under waterlogging remains unreported. This experiment observed sago palm growth performance under normal soil conditions (non-submerged conditions) as a control plot and extended waterlogged conditions. Several parameters were analyzed: Plant morphological growth traits, nitrogen, phosphorus, potassium, and sugar concentration in the plant organ, including sucrose, glucose, starch, and non-structural carbohydrate. The analysis found that sago palm morphological growth traits were not significantly affected by extended waterlogging. However, waterlogging reduced carbohydrate levels in the upper part of the sago palm, especially the petiole, and increased sugar levels, especially glucose, in roots. Waterlogging also reduced N concentration in roots and leaflets and P in petioles. The K level was independent of waterlogging as the sago palm maintained a sufficient level in all of the plant organs. Long duration waterlogging may reduce the plant's economic value as the starch level in the trunk decreases, although sago palm can grow while waterlogged.

10.
Plant Physiol ; 189(1): 188-203, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134220

RESUMO

Understanding water use characteristics of C3 and C4 crops is important for food security under climate change. Here, we aimed to clarify how stomatal dynamics and water use efficiency (WUE) differ in fluctuating environments in major C3 and C4 crops. Under high and low nitrogen conditions, we evaluated stomatal morphology and kinetics of stomatal conductance (gs) at leaf and whole-plant levels in controlled fluctuating light environments in four C3 and five C4 Poaceae species. We developed a dynamic photosynthesis model, which incorporates C3 and C4 photosynthesis models that consider stomatal dynamics, to evaluate the contribution of rapid stomatal opening and closing to photosynthesis and WUE. C4 crops showed more rapid stomatal opening and closure than C3 crops, which could be explained by smaller stomatal size and higher stomatal density in plants grown at high nitrogen conditions. Our model analysis indicated that accelerating the speed of stomatal closure in C3 crops to the level of C4 crops could enhance WUE up to 16% by reducing unnecessary water loss during low light periods, whereas accelerating stomatal opening only minimally enhanced photosynthesis. The present results suggest that accelerating the speed of stomatal closure in major C3 crops to the level of major C4 crops is a potential breeding target for the realization of water-saving agriculture.


Assuntos
Poaceae , Água , Dióxido de Carbono , Produtos Agrícolas , Nitrogênio , Fotossíntese , Melhoramento Vegetal , Folhas de Planta
11.
Nat Immunol ; 23(3): 399-410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145298

RESUMO

Targeted blockade of the checkpoint molecule programmed cell death 1 (PD-1) can activate tumor-specific T cells to destroy tumors, whereas targeted potentiation of PD-1 is expected to suppress autoreactive T cells and alleviate autoimmune diseases. However, the development of methods to potentiate PD-1 remains challenging. Here we succeeded in eliciting PD-1 function by targeting the cis-PD-L1-CD80 duplex, formed by binding of CD80 to the PD-1 ligand PD-L1, that attenuates PD-L1-PD-1 binding and abrogates PD-1 function. By generating anti-CD80 antibodies that detach CD80 from the cis-PD-L1-CD80 duplex and enable PD-L1 to engage PD-1 in the presence of CD80, we demonstrate that the targeted dissociation of cis-PD-L1-CD80 duplex elicits PD-1 function in the condition where PD-1 function is otherwise restricted. We demonstrate using murine models that the removal of PD-1 restriction is effective in alleviating autoimmune disease symptoms. Our findings establish a method to potentiate PD-1 function and propose the removal of restraining mechanisms as an efficient strategy to potentiate the function of inhibitory molecules.


Assuntos
Doenças Autoimunes , Neoplasias , Animais , Autoimunidade , Antígeno B7-1 , Antígeno B7-H1/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T
12.
Int Immunol ; 33(12): 693-698, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34596210

RESUMO

Cancer immunotherapies that target PD-1 (programmed cell death 1) aim to destroy tumors by activating tumor-specific T cells that are otherwise inactivated by PD-1. Although these therapies have significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment, only a limited proportion of patients benefits from the therapies currently. Therefore, there is a continued need to decipher the complex biology of PD-1 to improve therapeutic efficacies as well as to prevent immune-related adverse events. Especially, the spaciotemporal context in which PD-1 functions and the properties of T cells that are restrained by PD-1 are only vaguely understood. We have recently revealed that PD-1 function is strictly restricted at the activation phase of T-cell responses by the cis-interactions of PD-L1 and CD80 on antigen-presenting cells, which is critical for the induction of optimal T-cell responses. We also found that the sensitivity to the effects of PD-1 in T cells is essentially determined by T-cell-intrinsic factors. In T cells bearing T-cell antigen-receptors (TCRs) with lower affinity to antigenic peptides, PD-1 inhibits the expression of TCR-inducible genes more efficiently; thereby PD-1 preferentially suppresses low-affinity T cells. Thus, PD-1 function is coordinately regulated by various T-cell-intrinsic and -extrinsic factors that alter the responsiveness of T cells and the availability of PD-1 ligands. Precise and deeper understanding of the regulatory mechanisms of PD-1 is expected to facilitate the rational development of effective and safe immunotherapies.


Assuntos
Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Animais , Humanos
13.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34433672

RESUMO

Anti-PD-1 therapies can activate tumor-specific T cells to destroy tumors. However, whether and how T cells with different antigen specificity and affinity are differentially regulated by PD-1 remain vaguely understood. Upon antigen stimulation, a variety of genes is induced in T cells. Recently, we found that T cell receptor (TCR) signal strength required for the induction of genes varies across different genes and PD-1 preferentially inhibits the induction of genes that require stronger TCR signal. As each T cell has its own response characteristics, inducibility of genes likely differs across different T cells. Accordingly, the inhibitory effects of PD-1 are also expected to differ across different T cells. In the current study, we investigated whether and how factors that modulate T cell responsiveness to antigenic stimuli influence PD-1 function. By analyzing TCRs with different affinities to peptide-MHC complexes (pMHC) and pMHCs with different affinities to TCR, we demonstrated that PD-1 inhibits the expression of TCR-inducible genes efficiently when TCR:pMHC affinity is low. In contrast, affinities of peptides to MHC and MHC expression levels did not affect PD-1 sensitivity of TCR-inducible genes although they markedly altered the dose responsiveness of T cells by changing the efficiency of pMHC formation, suggesting that the strength of individual TCR signal is the key determinant of PD-1 sensitivity. Accordingly, we observed a preferential expansion of T cells with low-affinity to tumor-antigen in PD-1-deficient mice upon inoculation of tumor cells. These results demonstrate that PD-1 imposes qualitative control of T cell responses by preferentially suppressing low-affinity T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Ativação Linfocitária/imunologia , Receptor de Morte Celular Programada 1/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timoma/imunologia , Neoplasias do Timo/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Timoma/metabolismo , Timoma/patologia , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia
14.
Front Plant Sci ; 12: 719259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447404

RESUMO

Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.

15.
Nat Commun ; 12(1): 4944, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400629

RESUMO

Plants use nitrate, ammonium, and organic nitrogen in the soil as nitrogen sources. Since the elevated CO2 environment predicted for the near future will reduce nitrate utilization by C3 species, ammonium is attracting great interest. However, abundant ammonium nutrition impairs growth, i.e., ammonium toxicity, the primary cause of which remains to be determined. Here, we show that ammonium assimilation by GLUTAMINE SYNTHETASE 2 (GLN2) localized in the plastid rather than ammonium accumulation is a primary cause for toxicity, which challenges the textbook knowledge. With exposure to toxic levels of ammonium, the shoot GLN2 reaction produced an abundance of protons within cells, thereby elevating shoot acidity and stimulating expression of acidic stress-responsive genes. Application of an alkaline ammonia solution to the ammonium medium efficiently alleviated the ammonium toxicity with a concomitant reduction in shoot acidity. Consequently, we conclude that a primary cause of ammonium toxicity is acidic stress.


Assuntos
Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Glutamato-Amônia Ligase/metabolismo , Plastídeos/metabolismo , Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutamato-Amônia Ligase/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Brotos de Planta/metabolismo
16.
J Exp Bot ; 72(11): 3971-3986, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33780533

RESUMO

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Células do Mesofilo , Filogenia , Folhas de Planta
17.
Chem Pharm Bull (Tokyo) ; 68(11): 1055-1060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132372

RESUMO

In clinical practice, a thickening solution is frequently used to allow easy swallowing of tablets by patients suffering from dysphagia. This study investigated the effect of the thickening solution on tablet disintegration. Model tablets containing different disintegrants were prepared and their disintegration times (DTs) measured using standard methods. We also performed an additional disintegration test on the model tablets after immersing them for 1 min in thickening solution containing xanthan gum (XTG-SOL) ("modified disintegration test"). The DTs of the test tablets were substantially prolonged by immersion in XTG-SOL. Furthermore, the effect of the XTG-SOL on the DTs differed depending on the type of disintegrant contained in the tablets. To investigate in more detail this prolongation of tablet disintegration, we examined the contribution of tablet properties to their DTs. The properties analyzed included contact angle, T2 relaxation time, wetting time, and water absorption ratio. The contributions of these properties to the DTs were analyzed using multiple regression analysis. This analysis clarified that the tablet properties affecting DTs changed after immersion in XTG-SOL: wetting time significantly affected the DTs measured in the normal disintegration test, while T2 was crucial for the DTs of tablets immersed in XTG-SOL. These findings provide valuable information for design of tablet formulations, and for clinical medication management for older patients with dysphagia.


Assuntos
Polissacarídeos Bacterianos/química , Comprimidos/química , Composição de Medicamentos , Solubilidade , Água/química
18.
Plant Sci ; 301: 110667, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218634

RESUMO

Lateral roots (LRs) are indispensable for plant growth, adaptability and productivity. We previously reported a rice mutant, exhibiting a high density of thick and long LRs (L-type LRs) with long parental roots and herein referred to as promoted lateral root1 (plr1). In this study, we describe that the mutant exhibited decreased basal shoot starch accumulation, suggesting that carbohydrates might regulate the mutant root phenotype. Further analysis revealed that plr1 mutation gene regulated reduced starch accumulation resulting in increased root sugars for the regulation of promoted LR development. This was supported by the exogenous glucose application that promoted L-type LRs. Moreover, nitrogen (N) application was found to reduce basal shoot starch accumulation in both plr1 mutant and wild-type seedlings, which was due to the repressed expression of starch biosynthesis genes. However, unlike the wild-type that responded to N treatment only at seedling stage, the plr1 mutant regulated LR development under low to increasing N levels, both at seedling and higher growth stages. These results suggest that plr1 mutation gene is involved in reduced basal shoot starch accumulation and increased root sugar level for the promotion of L-type LR development, and thus would be very useful in improving rice root architecture.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Açúcares/metabolismo
19.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32929051

RESUMO

To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.


Assuntos
Imunidade Adaptativa/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Imunoterapia/métodos , Fatores de Transcrição/metabolismo , Aminoácidos , Humanos
20.
Plant Physiol ; 183(4): 1600-1611, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32518201

RESUMO

It has been argued that accumulation of nonstructural carbohydrates triggers a decrease in Rubisco content, which downregulates photosynthesis. However, a decrease in the sink-source ratio in several plant species leads to a decrease in photosynthesis and increases in both structural and nonstructural carbohydrate content. Here, we tested whether increases in cell-wall materials, rather than starch content, impact directly on photosynthesis by decreasing mesophyll conductance. We measured various morphological, anatomical, and physiological traits in primary leaves of soybean (Glycine max) and French bean (Phaseolus vulgaris) grown under high- or low-nitrogen conditions. We removed other leaves 2 weeks after sowing to decrease the sink-source ratio and conducted measurements 0, 1, and 2 weeks after defoliation.


Assuntos
/metabolismo , Phaseolus/metabolismo , Phaseolus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...